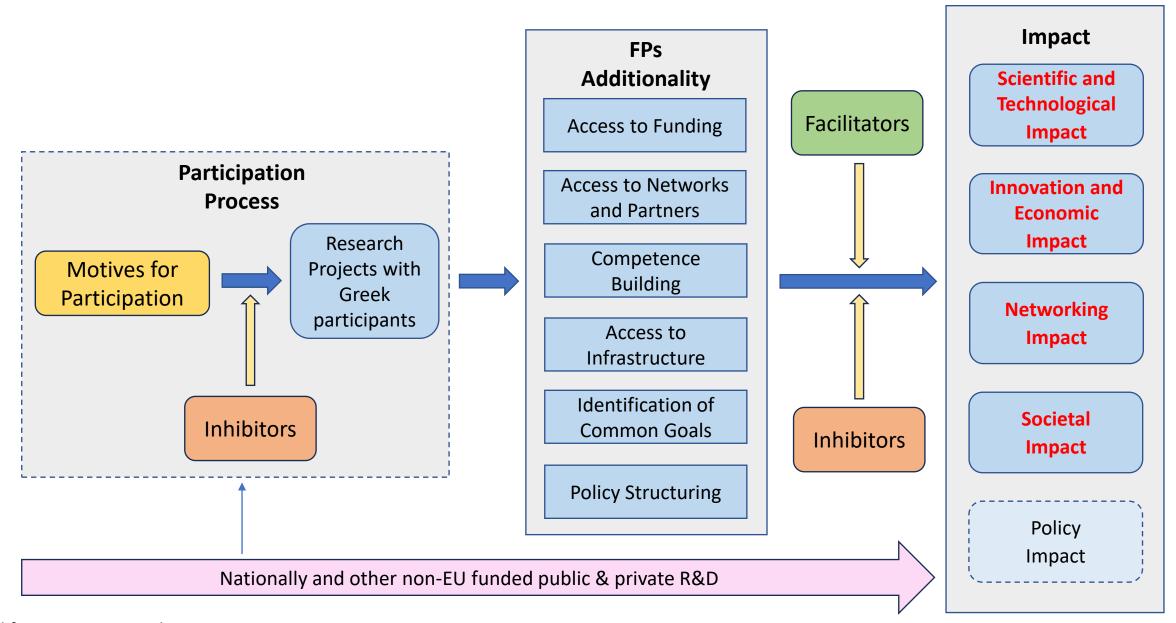


The impact of participation in the H2020 programme for Greek entities


Aimilia Protogerou, Yannis Caloghirou, Panagiotis Panagiotopoulos

NETonKIE Conference, December 14, 2023
National Technical University of Athens, Multimedia
Auditorium

This study has been conducted in the context of a research project supported by the Hellenic Foundation for Research and Innovation (H.F.R.I.) under the "1st Call for H.F.R.I. Research Projects to support Faculty Members & Researchers and the procurement of high-cost research equipment grant" (Project Number: HFRI-FM17-3087), Principal Investigator: Yannis Caloghirou, NTUA Emeritus Professor.

NETonKIE's Conceptual Framework

Survey sample

Firms

- **Size:** 64% are micro/small firms and 22% are large firms
- Age: 22% are young firms (≤ 10 years)
- Sectoral distribution
 - 68% in services (55% knowledge-intensive services
 - 18% in manufacturing (10% hightech/medium-high-tech)

Research Teams

- Organization type
 - 110 RTs from 16 Universities
 - 47 RTs from 11 Research Centres
- Size
 - ≤ 10 members: 46%
 - 10 < ≤ 20 members: 28%
 - > 20 members: 26%
- Scientific field
 - 42% in engineering and technology
 - 24% in natural sciences

Case Studies sample

Firms

- 9 firms (3 young micro, 1 medium-sized, 5 large)
- Various sectors: Knowledge-intensive services, manufacturing and mining

Research Teams

- 16 RTs (8 Universities and 6 Research Centres)
- Various scientific fields

Higher participation intensity and increased coordination role for RTs compared to firms European research programmes are the main funding source for RTs

Participation intensity in FPs

	Average number of projects		
	Firms (N=103)	Research Teams (N=157)	
FP1 – FP7	5.3 (1)	7.7 (2)	
H2020	4.2 (2)*	5.9 (3)*	
H2020 (coordinators)	7.3% (0%)***	23% (10%)***	

Note: Mean and median in parentheses.

Three and one asterisks correspond to statistically significant differences at p < 0.01 and p < 0.10 respectively.

Average funding of RTs (last 5 years)

Funding source	Universities (N = 109)	Research Centres (N = 47)	Total (N = 156)
European Programmes	69.1%*	60.5%*	66.5%
National Programmes	19.6%**	28.7%**	22.3%
Cooperation with firms or other entities for service provision	9.5%	8%	9.1%
Regular budget	1.7%	2.8%	2.1%

Note: Two and one asterisks correspond to statistically significant differences at p < 0.05 and p < 0.10 respectively.

Firms: Motives for participation in FPs Access to funding, networking, and acquisition of new knowledge are the most important motives

Survey results (N=103)

Motives for participation	Avg. rating (5-point scale)	Important (% of Firms)
Technological knowledge enhancement	4.48	88.3%
Strengthening existing / creation of new know-how		
Monitoring key technological developments /		
cutting edge technologies	4.00	00 =0/
Funding and Networking	4.28	83.5%
Access to funding		
Networking and building solid cooperation		
Innovation and business development	3.83	57.3%
Faster development and market introduction of new products/services		
Entering a new market / improving the		
company's position in an existing market	2.40	E 4 00/
R&D cost and risk sharing	3.48	54.9%

Case studies results

- Strengthening existing/ creation of new know-how
 - ➤ Enhancing their innovation capability in the long term and, in turn, entering new markets and strengthening their competitive position
- Monitoring key technological developments is particularly important for large firms
- Access to funding is more important for young research-intensive firms
- Networking and building solid cooperation with other entities
 - Continuous and systematic research collaboration with research bodies and/or other firms, access to new customers, and enhancement of company image.

Research Teams: motives for participation in FPs Access to funding for maintaining/enhancing human resources, networking, and advancing research activity are the most important motives

Survey results (N=156)

Motives for participation	Avg. rating (5-point scale)	Important (% of RTs)
Funding and human resources maintaining/enhancement	4.72	92.9%
Access to funding		
Maintaining of existing and acquiring of new researchers		
Research activity and monitoring developments in cutting-edge fields	4.65	94.2%
Networking/Reputation enhancement	4.49	85.9%
Strengthening scientific reputation Networking and building solid cooperation		
Technological infrastructure enhancement	3.68	56.5%
Producing research results with potential commercial utilization	3.49	51.6%

Case studies results

- Access to funding is important for maintaining and further enhancing human resources
- Strengthening research activity and networking is crucial for
 - Acquisition/exchange of knowledge.
 - Expanding the field of their activities and enhancing the interdisciplinarity of their work.
 - Enhancing the research team's visibility and scientific reputation.
- Technological infrastructure enhancement
 - Important for RTs active in specific scientific/technological fields [e.g. composite and smart materials, biotechnology, nanotechnology, ICTs (hardware)]

Survey results: Determinants of participation in H2020

Firms

Independent Variables	Dependent Variable	
macpenaent variables	No of H2020 projects (Ln)	
Control Variables		
Firm's Age	-0.007	
No of Employees (Ln)	0.463***	
Sector	No significance	
Firm's knowledge and innovation characte	eristics	
Ratio of Employees with Master/PhD	0.006**	
Innovation Strategy	0.186*	
Ratio of Employees involved in R&D	0.011***	
Previous participation intensity in FPs		
No of projects in previous FPs	0.008	
No. of Observations	89	
F	9.33***	
R ²	0.5152	
Adjusted R ²	0.4599	

^{***:} p < 0.01 **: p < 0.05 *: p < 0.10

Research Teams

Dependent Variable No of H2020 projects (Ln)
0.442***
0.516***
0.024
-
0.038
0.601***
-0.009***
-0.012***
0.012***
139
15.82***
0.4932
0.4621

Case studies findings: Participation Determinants

- Previous participation in FPs increases
 - scientific reputation and visibility building, and facilitates participation in new proposals/consortiums
 - administrative know-how (proposal preparation/submission procedures) of both firms and research teams
- Relations with Greek research teams are critical for both young and established - firms' participation in FPs.
- Size matters: increased human and financial resources
- Availability of high-quality human resources is vital for successful participation

Scientific and technological outcome resulting from participation in H2020 projects:

Higher for RTs Compared to firms

Firms (N=101)

	Avg. rating (5-point scale)	Important (% of firms)
Technological and research capability improvement	3.49	46.5%
Improvement of the company's		
research equipment		
Upgrading the company's human		
resources (knowledge and skills).		
Improving the company's technological capability		
Improving the company's capability to conduct R&D		
New knowledge acquisition	3.23	29.7%
Undertaking a higher-than-usual risk-		
taking research effort		
Entering a new enabling technology		

Research Teams (N=154)

	Avg. rating (5-point scale)	Important (% of RTs)
Research capability improvement	4.22	74.7%
Improvement of research experience and cooperation skills		
Attraction of PhD students and post-doctoral researchers		
New knowledge acquisition/exchange	4.06	80.5%
Acquisition of new knowledge in a familiar research field		
Involvement in a new research field		
Increase of multidisciplinary research collaborations		
Research infrastructure and education activity improvement	2.96	26.8%
Creation or significant improvement of research infrastructure	2.83	38%
Improvement of educational activities	3.12	43.2%

Scientific publications of RTs produced through participation in H2020 projects

	Average Publications		
	Total (N = 151)	Universities (N = 105)	Research Centres (N = 46)
Publications in international scientific journals (already produced)	6.89 (4)	8.17** (4)	3.96** (3)
Publications in international scientific journals (already produced or expected to be produced)	10.28 (6)	11.72** (6)	7** (6)
Publications in collective volumes (already produced)	1.40 (0)	1.51 (0)	1.14 (0)
% of co-publications in international scientific journals with other project partners	61%	60.6%	61.8%

• Extended scientific cooperation: 6 out of 10 publications are co-publications

Note: Mean and median in parenthesis.

Two asterisks correspond to statistically significant differences at p < 0.05.

Scientific and technological outcome: facilitating (or inhibiting) factors (case studies)

Facilitators

- Partners of high scientific quality
- Multidisciplinarity and complementarity of expertise
- Good climate and cooperation between and among partners (effective project management)
- Access of businesses, especially start-ups, to high-level research equipment of Unis and Research Centers

Inhibitors

- Very large project consortiums
- Excessive bureaucracy in technological equipment procedures in Unis and Research Centers (over-bureaucratization in public procurement)

Innovation output of H2020 research projects: Most projects lead to a product and/or service innovation. More than half of them also result in process and/or organizational innovation.

Firms

	% of Projects (N=102)		
	YES	NO	Not a deliberate output
At least one innovation type	95.1	3.9	1
Product and/or Service Innovation	78.4	6.9	14.7
Process and/or Organizational Innovation	58.8	19.6	21.6

Research Teams

	% of Projects (N=155)		
	YES	NO	Not a deliberate output
At least one innovation type	83.9	5.8	10.3
Product and/or Service Innovation	71.6	5.8	22.6
Process and/or Organizational Innovation	55.5	18.1	26.5

Patent application: 5.8% of projects that developed some kind of innovation (N = 225)

Creation of a spin-off business in Greece: 4.5% of projects that developed some kind of innovation (N = 223)

Innovation utilization \rightarrow commercial exploitation appears to be larger among firms than research teams, especially in terms of using innovations internally to develop other products/services/processes

Firms

Innovation type	Utilization of innovation	N	%
Droduct and /or	Already commercially exploited	80	26.3%
Product and/or service	Already exploited internally (to develop other products/services)	76	65.8%
Process and/or Organizational Innovation Already commercially exploited Already used internally to improve company operation	57	19.3%	
	•	52	53.8%

Research Teams

Innovation type	Already commercially exploited		
	N	%	
Product and/or service	108	11.1%	
Process and/or Organizational Innovation	83	12%	

Factors facilitating commercial exploitation of innovations produced in research projects (Case Studies)

- Additional funding
- Adequate interconnection mechanisms of academic partners with stakeholders (businesses and organizations) that could exploit innovation
- Interaction with end-users is important for the potential exploitation of innovation by public organizations and society at large (targeted dissemination actions of project results)
- Tackling IP issues and questions arising at the different stages of the project
- Legislative and regulatory interventions may be needed

Economic, production and business benefits \rightarrow improved quality of products, services and processes prevails (in accordance with innovation use), followed by R&D cost savings (higher impact for very small and small firms).

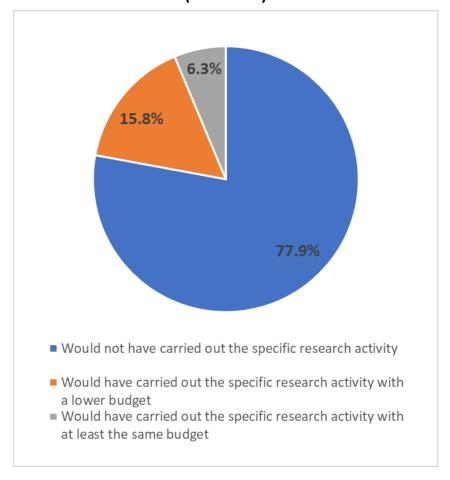
	% of	Firms
	High benefits	Not applicable
Improved quality of products, services or processes	56.1%	7.1%
R&D cost savings	35.3%	12.1%
Employment growth (increase) (after the end of the project, retention of employees hired during the project)	31.3%	19.2%
Productivity increase	25.3%	25.3%
New customers attraction	27.3%	18.2%
Revenue growth (increase)	27.2%	15.2%
Production cost savings	14.2%	26.3%
Exports' increase	10.2%	32.7%
Market share increase	9.1%	23.2%

Networking Impact

 Most firms (84.2%) and research teams (92.9%) developed new collaborations with a strong international character that in most cases are strengthened after the completion of the research projects.

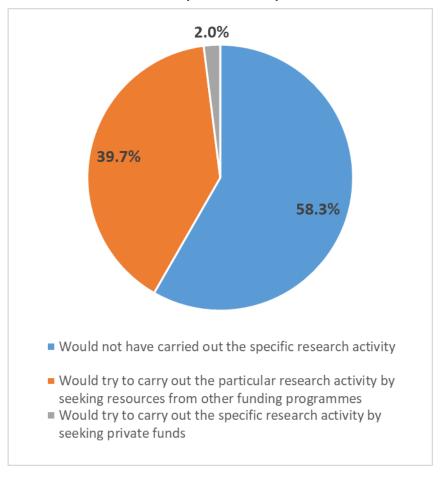
Facilitators (Case Studies)

- Increased complementarity of partners' expertise
- Clear objectives and roles of project partners
- Efficient flow of knowledge within and across project work packages (project management and coordination can play a catalytic role)
- Previous successful cooperation with project partners matters for developing new collaborations
- The absorptive capacity of partners drives effective networking and, in turn, future collaboration
- Face-to-face communication is decisive in building effective relations and trust (in contrast with online meetings especially during the Covid-19 period)


Social and Environmental Impact

- Multiple challenges addressed as projects belong to diverse technological areas (green energy and transport, sustainable agriculture, health, social inclusion, citizens security etc.)
- The actual or potential future contribution of projects to addressing specific challenges depends on:
 - project's thematic area and objectives and its TRL level
 - >active end-user's involvement,
 - for example, by assigning them specific roles, ensuring their trust and commitment, and establishing appropriate interaction mechanisms with various scientific bodies
 - o the earlier their involvement (e.g., from the design phase) the more the project results better meet their needs
 - rangeted dissemination actions to increase awareness and involvement of the scientific community, end users, policymakers, other social actors and stakeholders, and society in general about the value and usefulness of research results.

Additionality of the research project \rightarrow the majority of firms (78%) would not have conducted the specific research activity, the same applies to almost 6 out of 10 RTs.


4 out of 10 the RTs would have tried to conduct the specific activity using other funding sources

Firms (N = 95)

Research Teams

(N = 151)

Added value of FPs compared with nationally funded programmes \rightarrow Both firms and RTs acknowledge that FPs are providing a much higher added value in terms of both input and behavioral additionality

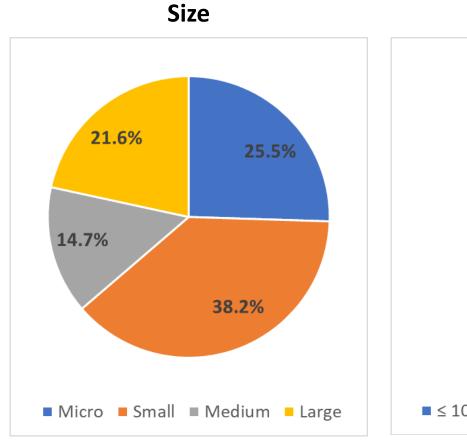
	Firms (N=98)		Research Teams (N=156)	
	Avg. rating (5-point scale)	High Added Value (% of Firms)	Avg. rating (5-point scale)	High Added Value (% of RTs)
Networking capability	4.49	90.8%	4.69	94.9%
Ability to build international research networks				
Possibility of conducting research in large research consortia				
Greater project funding	4.36	85.7%	4.70	94.2%
Research capability/knowledge acquisition	4.21	76.5%	4.19	70.3%
Better access to knowledge and research infrastructure				
Higher scientific level of research				
Viable relationships	4.14	70.4%	4.43	85.2%
Sustainable relationships with Universities and Res. centers				
Sustainable relationships with other organizations				

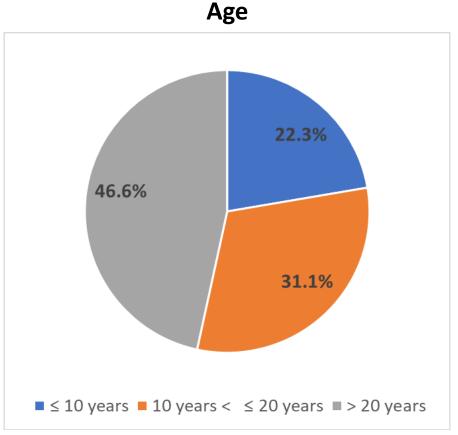
Policy recommendations (survey and case studies)

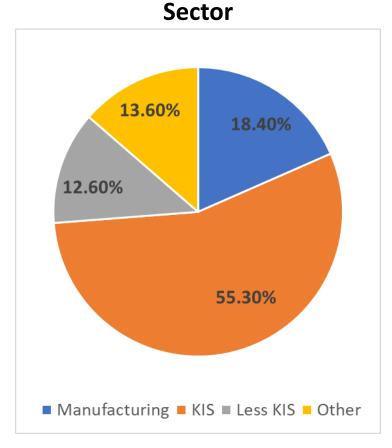
Higher utilization of research output/outcome to increase FP's long-term impact

- a) Increase funding opportunities for the commercial exploitation of research results
- b) Ensure higher involvement of end-users, especially in cases of research activity with high potential social/environmental benefits.
- c) Promotion and dissemination actions to engage the whole stakeholder ecosystem.
 - ➤ Connect research and innovation activity with public sector needs. Encourage public sector use of research results. Public space should be seen as a key user of research results.
- d) Introduce mechanisms for collecting and registering the publicly available pool of knowledge produced through collaborative projects.
- e) Reduce increased bureaucracy in Greek Unis and Research Centres (e.g., for procuring research equipment)
- Strengthen mechanisms to facilitate small actors' participation

Thank you for your attention!




The research project was supported by the Hellenic Foundation for Research and Innovation (H.F.R.I.) under the "1st Call for H.F.R.I. Research Projects to support Faculty Members & Researchers and the Procurement of Highard the procurement of high-cost research equipment grant" (Project Number: HFRI-FM17-3087).


Appendix

Back-up Results: Survey

Survey Sample Characteristics: Firms

Survey Sample Characteristics: Research Teams (N=157)

	No. of Research Teams	% of the total sample	No. of Organiza- tions	No. of Research Teams	No. of Organiza- tions
Universities	110	70%	16	500	23
Research Centres	47	30%	11	348	17
Total	157	100%	27	848	40

No. of Research Teams Members	Total Sample of RTs (%)	Univer- sities' RTs (%)	Research Centers' RTs (%)
0 < ≤ 5	14.1	13.8	14.9
5 < ≤ 10	31.4	28.4	38.3
10 < ≤ 20	28.2	29.4	25.5
20 < ≤ 30	15.4	18.3	8.5
30 < ≤ 50	6.4	6.4	6.4
50 <	4.5	3.7	6.4

Scientific Field	Total Sample of RTs (%)	Univer- sities' RTs (%)	Research Centers' RTs (%)
Engineering and technology	42.2	47.7	28.9
Natural sciences	24	18.3	37.8
Medical and health sciences	9.7	11.9	4.4
Agricultural sciences	9.1	7.3	13.3
Social sciences	8.4	7.3	11.1
Humanities	6.5	7.3	4.4

Κατανομή των ερευνητικών ομάδων του δείγματος ανά Πανεπιστήμιο και Ερευνητικό Κέντρο

Ίδρυμα	Τύπος Ιδρύματος	Αριθμός ερευνητικών ομάδων	% ερευνητικών ομάδων
<mark>Εθνικό Μετσόβιο Πολυτεχνείο</mark>	Πανεπιστήμιο	33	21.0%
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης	Πανεπιστήμιο	21	13.4%
Εθνικό Κέντρο Έρευνας και Τεχνολογικής Ανάπτυξης (ΕΚΕΤΑ)	Ερευνητικό Κέντρο	13	8.3%
<mark>Ίδρυμα Τεχνολογίας και Έρευνας (ΙΤΕ)</mark>	Ερευνητικό Κέντρο	12	7.6%
<mark>Εθνικό Καποδιστριακό Πανεπιστήμιο Αθηνών</mark>	Πανεπιστήμιο	10	6.4%
Γεωπονικό Πανεπιστήμιο Αθηνών	Πανεπιστήμιο	6	3.8%
Πανεπιστήμιο Κρήτης	Πανεπιστήμιο	6	3.8%
<mark>Πανεπιστήμιο Πατρών</mark>	Πανεπιστήμιο	5	3.2%
Πανεπιστήμιο Ιωαννίνων	Πανεπιστήμιο	5	3.2%
Ελληνικό Κέντρο Θαλάσσιων Ερευνών (ΕΛΚΕΘΕ)	Ερευνητικό Κέντρο	5	3.2%
Εθνικό Αστεροσκοπείο Αθηνών	Ερευνητικό Κέντρο	5	3.2%
Πανεπιστήμιο Αιγαίου	Πανεπιστήμιο	5	3.2%
<mark>ΕΚΕΦΕ «ΔΗΜΟΚΡΙΤΟΣ»</mark>	Ερευνητικό Κέντρο	4	2.5%
Δημοκρίτειο Πανεπιστήμιο Θράκης	Πανεπιστήμιο	4	2.5%
Πανεπιστήμιο Πειραιώς	Πανεπιστήμιο	3	1.9%
Πανεπιστήμιο Θεσσαλίας	Πανεπιστήμιο	3	1.9%
Πανεπιστήμιο Μακεδονίας	Πανεπιστήμιο	3	1.9%
Ελληνικός Γεωργικός Οργανισμός «ΔΗΜΗΤΡΑ»	Ερευνητικό Κέντρο	3	1.9%
Πολυτεχνείο Κρήτης	Πανεπιστήμιο	2	1.3%
Πανεπιστήμιο Δυτικής Αττικής	Πανεπιστήμιο	2	1.3%
E.K. AOHNA	Ερευνητικό Κέντρο	1	0.6%
Εθνικό Ίδρυμα Ερευνών	Ερευνητικό Κέντρο	1	0.6%
Χαροκόπειο Πανεπιστήμιο	Πανεπιστήμιο	1	0.6%
Πάντειο Πανεπιστήμιο	Πανεπιστήμιο	1	0.6%
Εθνικό Κέντρο Κοινωνικών Ερευνών	Ερευνητικό Κέντρο	1	0.6%
ΙΙΕΒΑΑ (Ακαδημία Αθηνών)	Ερευνητικό Κέντρο	1	0.6%
ΚΕΦΑΚ (Ακαδημία Αθηνών)	Ερευνητικό Κέντρο	1	0.6%
	ΣΥΝΟΛΟ	157	100.0%

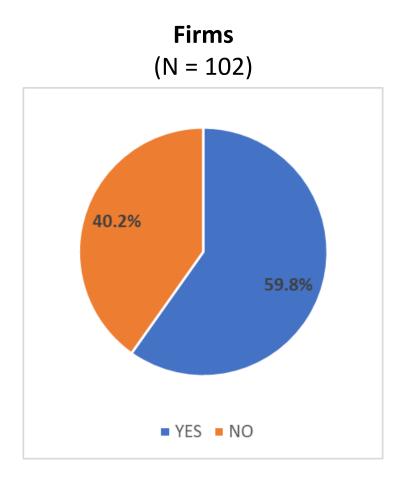
Motives for participation in FPs (case studies and survey)

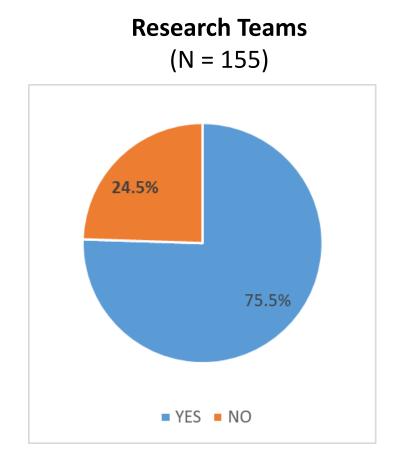
Firms

- Most important motives:
 - ➤ Access to funding (especially for young research-intensive firms)
 - ➤ Networking and building solid cooperation
 - >Acquisition of new knowledge
- Other motives (higher for smaller firms):
 - ➤ Innovation and business development
 - ➤ R&D cost and risk sharing

Research Teams

- Most important motives:
 - ➤ Access to funding for maintaining/enhancing their human resources
 - ➤ Networking and building solid cooperation
 - >Advancing their research activity
- Technological infrastructure enhancement is important for RTs belonging to specific scientific/technological fields
- Producing research results with potential commercial utilization constitutes motive for a smaller percent of RTs


Motives of Micro/Small and Medium/Large Firms for participation in FPs


	Micro/Sr	mall Firms	Medium/Large Firms		
Motives	Avg. rating (5-point scale)	Important (% of firms)	Avg. rating (5-point scale)	Important (% of firms)	
Technological knowledge enhancement	4.39*	84.6%	4.64*	94.6%	
Strengthening existing / creation of new know-how	4.49**	92.3%	4.73**	100%	
Monitoring key technological developments / cutting edge technologies	4.29	80%	4.54	91.9%	
Funding and Networking	4.40**	90.8%	4.05**	70.3%	
Access to funding	4.49***	90.8%	3.86***	73%	
Networking and building solid cooperation	4.31	90.8%	4.24	81.1%	
Innovation and business development	3.95*	64.6%	3.62*	43.2%	
Faster development and market introduction of new products/services					
Entering a new market / improving the company's position in an existing market					
R&D cost and risk sharing	3.61	62.5%	3.24	40.5%	

TRL at the beginning and at the end of the project

	Firms (N = 97)			Research Teams (N =147)				
TRL	Project's Project's Beginning End		Project's Beginning		Proje En			
TRL 1: Basic principles observed	5%		0%		12%		1%	
TRL 2: Technology concept formulated	29%	51%	0%	4%	22%	64%	3%	11%
TRL 3: Experimental proof of concept	16%		4%		30%		8%	
TRL 4: Technology validated in lab	19%		7%		22%		17%	
TRL 5 Technology validated in a relevant environment	21%	45%	8%	40%	8%	33%	19%	54%
TRL 6 Technology demonstrated in a relevant environment	6%		24%		3%		18%	
TRL 7: System prototype demonstration in operational environment	<mark>3%</mark>	<mark>4%</mark>	<mark>41%</mark>	<mark>56%</mark>	<mark>2%</mark>	<mark>3%</mark>	<mark>26%</mark>	<mark>35%</mark>
TRL 8: System complete and qualified	<mark>1%</mark>		<mark>15%</mark>		<mark>1%</mark>		<mark>9%</mark>	

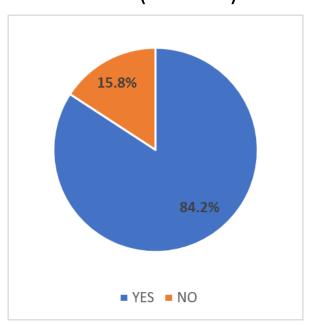
Previous cooperation with at least one of the consortium partners is important for entering a new project especially for research teams \rightarrow for most firms (71.7%) and research teams (80.2%) the context of previous cooperation is an EU-funded project

Objectives and Basic Roles in the research project

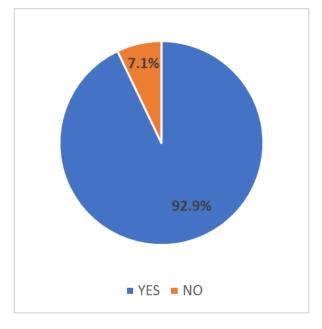
Objectives in the research project

	% of Firms	% of RTs
Research	75.3%	98.7%
Development	83.7%	78.9%
Commercial utilization	67%	19%
Use of research results	82%	80.5%

Basic Roles in the research project


	% of Firms	% of RTs
Conducting basic research	19%	54.2%
Conducting applied research	64.4%	81.7%
Development of new technology/know-how	60.4%	70.8%
Trial use of research results/technology produced	76.2%	61.3%
Provision of technological services	43.4%	31.4%
Provision of other services	35.6%	22.2%
Provision of education/training	28.7%	42.1%
Dissemination-communication of project results to the general public (institutional bodies, society)	59.4%	70.4%

Networking Impact


Most firms and research teams developed new collaborations with a strong international character that are strengthened after the completion of the research projects

Creation of new cooperations resulting from the research project

Firms (N = 101)

Research Teams (N = 154)

Maintenance or strengthening of new cooperations following the project's completion

	N	Avg. rating (5-point scale)	To high Extent (% of entities)
Firms	74	3.70	59.5%
Research Teams	123	4.19	77.2%

Networking Impact

New cooperations with:	% of Firms (N = 101)	% of Research Teams (N = 154)
Universities or Research Centres in Greece	52.5%	38.3%
Universities or Research Centres abroad	<mark>71.3%</mark>	89%
Firms in Greece	33.7%	27.9%
Firms abroad	<mark>66.3%</mark>	<mark>61.7%</mark>
Firms of the same sector	34.7%	
Firms of different sector	46.5%	

Social and environmental project impact \rightarrow multiple challenges addressed as projects belong to diverse technological areas

	Firms		Research Teams			
	% Projects			% of Projects		
	YES	NO	Not Applicable	YES	NO	Not Applicable
Improving the efficiency of resources (natural, human, technological, etc.)	49	13.3	37.6	51.3	17.3	31.3
Strengthening the security of technologies	41.8	16.3	41.8	29.3	24.7	46
Development of tools to support or monitor sustainable development	35.1	20.6	44.3	37.3	19.3	43.3
Protecting health, enhancing well-being and dealing with demographic changes	34	11.3	54.6	37	19.2	43.8
Clean, efficient and safe energy	28.6	18.4	53.1	24.8	29.5	45.6
Addressing other social challenges and needs	23.7	19.6	56.7	34.7	17.4	47.9
Strengthening "smart", green and integrated transport	21.9	19.8	58.3	14.7	28	57.3
Food security / sustainable agriculture, livestock, forestry and fisheries	18.6	19.6	61.9	25.5	26.8	47.7
Protection of freedom and security of Europe and its citizens	14.9	22.3	62.8	12.1	26.2	61.7
Alleviation-dealing with phenomena of social exclusion	8.2	21.6	70.1	16.6	25.2	58.3

Additionality of the research project

Firms (N = 95)

Research Teams (N = 151)

If the company had not received funding to participate in this research project, which of the following do you think would most likely have happened?	Total (%)	Micro/Small Firms (%)	Medium/ Large Firms (%)
Would not have carried out the specific research activity	77.9	80.3	72.7
Would have carried out the specific research activity with a lower budget	15.8	13.1	21.2
Would have carried out the specific research activity with at least the same budget	6.3	6.6	6.1

If the research team had not received funding to participate in this research project, which of the following do you think would most likely have happened?	Total (%)	Universities RTs (%)	Research Centres RTs (%)
Would not have carried out the specific research activity	58.3	62.9	47.8
Would try to carry out the particular research activity by seeking resources from other funding programmes	39.7	35.2	50
Would try to carry out the specific research activity by seeking private funds	2	1.9	2.2